
TECHNICAL DOCUMENT 3148
December 2002

Infrared Search and Track
Installation Instructions and

User’s Guide

DoD HPC Modernization Program
(CHSSI SIP-8)

Approved for public release;
distribution is unlimited

SSC San Diego

San Diego, CA 92152-5001

LH

SSC SAN DIEGO
San Diego, California 92152-5001

Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

This report was sponsored by the Department of Defense High Performance Computing
Modernization Office (HPCMO) Common HPC Software Support Initiative (CHSSI).

This is a work of the United States Government and therefore is not copyrighted. This work may
be copied and disseminated without restriction. Many SSC San Diego public release documents are
available in electronic format at http://www.spawar.navy.mil/sti/publications/pubs/index.html

FOR_C® and FOR_STRUCT® are registered trademarks of Cobalt Blue, Inc.

MATLAB® is a registered trademark of The MathWorks, Inc.

Origin® is a registered trademark of Silicon Graphics, Inc.

Released by

Active Acoustics

Under authority of

Maritime Surveillance Division

i

CONTENTS
1. INTRODUCTION... 1

2. DISTRIBUTION RESTRICTIONS.. 1

3. CODE CONVERSION PROCESS... 2

4. PARALLELIZATION PROCESS... 3

5. DAS MODULES IN BETA DELIVERY .. 4

5.1 OVERVIEW OF DAS BASELINE PATHWAY.. 4
5.2 OVERVIEW OF DELIVERED DAS MODULES ... 4

5.2.1 Module AP_TI ... 4
5.2.2 Module SA_PN ... 5
5.2.3 Module RS_RS ... 6
5.2.4 Module FL_IR ... 6
5.2.5 Module RS_RS_ST... 7
5.2.6 Module FL_SP_VD ... 7
5.2.7 Module DT_BN ... 7
5.2.8 Module PARALLEL DAS... 8

5.3 DAS ANALYSIS MODULES .. 8
5.3.1 Module BAS2EOS .. 8
5.3.2 Module MAT2BAS .. 8

6. DISTRIBUTED ALGORITHM STREAM OPERATION .. 8

6.1 PLATFORMS... 8
6.2 DISTRIBUTION PACKAGE CONTENTS... 9
6.3 INSTALLATION AND CONFIGURATION.. 10
6.4 CONFIGURATION .. 11

6.4.1 MPI ... 12
6.4.2 VSIPL ... 12
6.4.3 Matlab... 12

6.5 COMPILING AND LINKING... 12
6.6 DATA DESCRIPTION ... 13

6.6.1 Input Data ... 14
6.6.2 Reference Data... 14

7. DAS MODULE TESTING.. 14

7.1 DAS DRIVER PROGRAMS... 15
7.1.1 go ... 15
7.1.2 runtests... 16

7.2 SINGLE MODULE AND PIPELINE DAS TEST CASES... 17

ii

8. DAS SOFTWARE LIMITATIONS.. 17

9. REFERENCES.. 19

FIGURES

1. DAS Baseline pathway... 5
2. SA_PN output example.. 16

TABLES

1. HPC platforms.. 9
2. Distribution package contents.. 10
3. Data description. .. 14

1

1. INTRODUCTION
The purpose of the Common High Performance Computing Software Support Initiative (CHSSI)

Infrared Search and Track for Missile Surveillance (IRST) SIP-8 project is to provide a scalable,
high performance capability for developing infrared surveillance algorithms. The basis for this effort
is the Distributed Algorithm Stream (DAS) software package previously developed by the Airborne
Infrared Measurement Systems (AIRMS) program, funded by the Defense Advanced Research
Projects Agency (DARPA) Sensor Technology Office (STO) from 1989 through 1996. The AIRMS
program demonstrated the longwave infrared (LWIR) sensor and signal processing technology
necessary to detect dim targets at ranges of up to 300 nautical miles against cluttered backgrounds.

Under the AIRMS effort, DAS was originally programmed in the FORTRAN programming
language and was run on Sun workstations, the VMS alpha and DEC workstations, and on the
massively parallel Intel Paragon. The DAS processing software is a highly modular signal processing
stream that includes data quality assessment, calibration, target injection, pattern noise mitigation,
jitter mitigation, data rework, registration, 3D match filtering, and detection and tracking algorithms.
The advantage conferred by the modular architecture of the IRST processing project is that
individual algorithms may be modified without requiring changes to other algorithms.

The converted DAS software will be used as a testbed for improving various IRST algorithms. In
order to evaluate the performance of the algorithms, the processing of a large amount of data is
required. For instance, in order to determine that an algorithm has reached a false alarm rate of one
false detection per hour, at least 10 hours of data must be processed. A scalable version of the
algorithm could be run faster than real time on a parallel high performance computer in order to
make such determinations in an acceptable amount of time. By making the software portable and
scalable, development may be done on single workstations or small parallel machines, while large
problems or large data sets may be processed efficiently on large high performance computing
(HPC) platforms.

This document briefly describes the process of translating the FORTRAN alpha release DAS
software modules to ANSI C using a commercial off-the-shelf (COTS) translator [Reference 1]. In
addition to the DAS translation effort, the other critical task was selecting and implementing a
communication library for the translated modules that would support wide portability and achieve a
high degree of scalability on a number of different HPC platforms. Message Passing Interface (MPI)
was selected as the parallelization tool for the translated DAS software modules, and a summary has
been included that explains the selection of MPI. This document also provides a functional
description of the converted DAS algorithms, instructions for installing the converted DAS software,
instructions for compiling and linking the converted DAS software, and instructions for executing
the test cases.

The original FORTRAN DAS software as developed by the AIRMS program is available from
PAR Government Systems in La Jolla, CA (858) 551-9880.

2. DISTRIBUTION RESTRICTIONS
Distribution of the IRST software is limited to U.S. Government Agencies and their contractors.

Furthermore, export of the IRST software is restricted by the Arms Export Control Act (Title 22,
U.S.C., Sec 2751 et seq.). Violations of these laws are subject to severe criminal penalties.

2

3. CODE CONVERSION PROCESS
The DAS signal processing software package consists of approximately 500,000 lines of

FORTRAN source code contained in more than 2,000 source files and 82 different directories. In
addition, there are more than 130 DAS programs and 182 FORTRAN include files. The SIP-8
project is tasked with translating the DAS FORTRAN code to ANSI C and parallelizing the
converted DAS software.

Because of the vast number of FORTRAN source lines and SSC San Diego’s limited resources, a
COTS translator was purchased from Cobalt Blue (FOR_C®) that was used to convert the DAS
FORTRAN software into ANSI C. The Cobalt Blue translator produces readable and portable
software. What distinguishes the Cobalt Blue translator from other COTS translators is that Cobalt
Blue provides the source code for the translator’s run-time library, thereby permitting porting of the
translated software to different HPC platforms.

SSC San Diego developed a DAS conversion process document describing the process of
translating the DAS FORTRAN software into ANSI C. DAS module SA_PN was the initial DAS
module for demonstrating the conversion process and proved to be very successful. The DAS
conversion process has subsequently been applied to all the converted DAS modules contained in the
IRST distribution package. The success of the translation process was demonstrated not only by SSC
San Diego but also by PAR Government Systems as well. The DAS conversion document is
contained in the irst_dist_xxx/doc installation subdirectory.

The FOR_C run-time library must be built for each computer platform to which the DAS software
is ported. To create the run-time library, simply compile all the C source files contained in the
irst_dist_xxx/code/cblue/fcrt installation subdirectory, and the appropriate run-time library
filename is created for the selected platform. The run-time library filename is specified as a
dependency of the translated software. The ability to re-compile the FOR_C run-time library for each
HPC platform thereby provides portability. For specific instructions on how to build the FOR_C run-
time library, refer to Section 6.5, “Compiling and Linking.”

In order for the translator to function properly and produce high-quality translation results, the
original FORTRAN software must be structured FORTRAN. In addition to the FOR_C translation
software tool, Cobalt Blue also developed a FORTRAN Structuring tool (FOR_STRUCT®), which
is a comprehensive structuring utility that transforms spaghetti software into fully structured
software. When executing program FOR_STRUCT on the DAS FORTRAN, a more conventional
ANSI C code is produced.

This document does not address the FOR_C translation results because there are simply far too
many subtle translation artifacts to describe. However, it should be noted that the I/O translation
results initially appear to be obscure because calls are made to the FOR_C run-time library. In
reviewing these calls more closely, it is clear that the calls are nothing more than Cobalt Blue C
functions that perform I/O [Reference 1].

After the DAS code has been successfully translated, the ANSI C DAS code is checked into
Concurrent Version System (CVS). The translated DAS code is then compiled and compilation
errors are resolved. Typical translation errors are as follows: non standard-intrinsic functions or other
non-standard language features, or where calls to the underlying operating system are not portable.

After the code has been compiled successfully, a commercial lint tool called Flexelint from
Gimpel Software was executed on the converted code. Flexelint has proven to be a valuable asset in

3

finding redundant code and redundant variable declarations, and when local code changes cause non-
local problems. After all the Flexelint errors and warning messages have been resolved, the
converted module is executed and the ANSI C DAS created output file is validated.

4. PARALLELIZATION PROCESS
One issue that the CHSSI signal and image processing projects must address is the possibility that

the software could be used in an embedded system on, for instance, a ship or aircraft, to process
sensor data in real time. It has been shown that the DAS software would require parallelization in
order to process a typical IR sensor in real time. In addition, even in a non-real-time application such
as an algorithm testbed, high-speed processing is needed in order to process larger data sets for
algorithm performance analysis. Without the capability to process large amounts of sensor data,
algorithm developers may be limited to showing good performance for only a selected set of cases. A
parallel implementation of the test bed may allow enough data to be processed to determine the true
performance of the algorithm.

To implement the parallelism of the converted IRST software, two interface alternatives were
considered: MPI and Scalable Programming Environment (SPE). For communications portability
among parallel HPCs, the MPI Standard library has become widely accepted. The vendors of nearly
all HPC systems of interest provide high performance implementations of MPI. MPI is also available
on the major embedded systems platforms. Alternatively, SSC San Diego has developed the SPE, a
high-level communication library that has been ported to a number of HPC platforms [Reference 3].
In addition to point-to-point messaging, the SPE will transparently distribute data to parallel
processors. The SPE has been used successfully in a number of signal processing projects.

During the AIRMS project, the most important modules of the DAS signal processing software
were modified to run in parallel on the Intel Paragon and on a network of workstations. This was
primarily done through an image tiling interface, although various direct communication calls occur
throughout the code. This parallel functionality was implemented with direct calls to both the
proprietary Intel communications library (NX) and to the Parallel Virtual Machine (PVM) library.
With the demise of the Intel Paragon, the NX library has become obsolete. PVM is an open source
library that provides portable communications among workstations. Although widely portable, PVM
is unsuitable for high performance message passing within the processors of a parallel machine due
to the relative inefficiency of communications compared to the manufacturers optimum method on
that machine.

The approach to parallelizing the DAS software, then, was a choice between directly modifying
the NX and PVM library calls into MPI library calls, and more substantially modifying the DAS
code to use the SPE library. Given the size and complexity of the DAS software, it was decided to
use the former approach.

4

5. DAS MODULES IN BETA DELIVERY

5.1 OVERVIEW OF DAS BASELINE PATHWAY

The three basic processing steps for DAS are (1) pre-processing, (2) registration and filtering, and
(3) detection and tracking. While alternate modules exist in DAS for most of the steps in the
processing stream, the DAS Baseline modules represent the preferred pathway through these three
steps because these modules are the most useful, thoroughly tested, and fully validated modules
[Reference 2]. Figure 1 shows the modules and functionality of the Baseline pathway. The data input
at the beginning of the pathway consists of raw AIRMS-collected imagery or synthetically generated
data. Those modules indicated in red and marked accordingly are the modules present in this
delivery, namely:
• Target Insertion (AP_TI)
• Sensor Artifact Removal (SA_PN)
• Registration (RS_RS)
• Covariance Based Filter (FL_IR)
• Reverse Registration (RS_RS_ST)
• Velocity Stacking (FL_SP_VD)
• Detection/Thresholding (DT_BN)

5.2 OVERVIEW OF DELIVERED DAS MODULES

The following sections contain brief functional descriptions of the DAS modules that were
converted and parallelized by SSC San Diego and PAR Government Systems, and represent the DAS
modules contained in the IRST Beta software distribution package. Operation of the DAS modules is
controlled via NAMELIST files. The NAMELIST files contain input parameters necessary to
execute the DAS modules.

For guidelines on individual DAS module parameter settings and a description of the DAS
algorithm, the user is directed to the individual module description documents contained in the
irst_dist_xxx/doc/irst_doc installation subdirectory. In addition to the individual DAS module
description documents, subdirectory irst_dist_xxx/doc/irst_doc/Final_Report contains AIRMS
Final Report [Reference 4].

5.2.1 Module AP_TI
AP_TI inserts one or more additive point targets into the scene. The user specifies via the namelist

the intensity (watts per steradian), position (pixels in azimuth and elevation), velocity (pixels per
frame in azimuth and elevation) and range (kilometers) of each target. Additionally, the user must
specify sensor characteristics, such as the point spread function (PSF), instantaneous field-of-view
(iFOV) and the spectral bandwidth. For a more detailed description of the AP_TI algorithm, the user
is directed to the AP_TI module description document and the AIRMS Final Report.

5

Figure 1. DAS Baseline pathway.

5.2.2 Module SA_PN
SA_PN mitigates the pattern noise associated with the AIRMS IRST sensor. The pattern noise

consists of three main components.

The dominant noise component is very typical of all scanned electro-optic sensors and consists of
a random bias from row-to-row that slowly varies across the image. This component is efficiently

Detection/Thresholding
DT_BN

D
et

ec
tio

n
an

d
Tr

ac
ki

ng

Tracking
TT_MH

D
A

S
M

od
ul

es
 C

on
ve

rt
ed

 a
nd

 P
ar

al
le

liz
ed

 M
od

ul
e

O
nl

y

R
un

s
Se

ria
lly

Reverse Registration
RS_RS_ST

Calibration
AP_CAL

Target Insertion
AP_TI

Sensor Artifact Removal
SA_PN

Registration
RS_RS

Covariance Based Filter
FL_IR

Pr
ep

ro
ce

ss
in

g
R

eg
is

tr
at

io
n

an
d

Fi
lte

rin
g

Velocity Stacking
FL_SP_VD

M
od

ul
e

N
ot

C

on
ve

rt
ed

AIRMS Raw Data

6

suppressed by notching energy whose spatial frequency is in a narrow band along the azimuthal DC
axis. This notch does not, however, extend to kel=0 to avoid significantly distorting the clutter
content. This is implemented by (1) low-pass filtering in azimuth to estimate the local bias for each
row, (2) high-pass filtering in elevation to retain only the variation from row-to-row, and (3)
subtracting the resulting pattern estimate from the observed image. The namelist parameter
“DO_BIAS” exercises this option.

A similar philosophy is used for the two other fixed pattern components that are peculiar to the
AIRMS sensor. An azimuthally white bias which repeats every 5-lines (namelist parameter
“DO_FIVE_LINE”) and a series of “steps” that occur every 25-lines, corresponding to multiplexor
(MUX) groupings in the readout electronics (namelist parameter “DO_MUX_BIAS”). For a more
detailed description of the SA_PN algorithm, the user is directed to the SA_PN module description
document and the AIRMS Final Report.

5.2.3 Module RS_RS
The intent of the RS_RS module is to align similar clutter features in a stack of frames. This

spatial consistency over time results in better temporal cancellation in the matched filter that follows
(for which FL_IR is the baseline module). RS_RS is described as a “rubber sheeting” image
registration. Conceptually, it can be viewed as stretching one image as though it were a rubber sheet
so that it comes into alignment with the reference image. This is a two-step process. First, the
corresponding points in the two frames are determined by maximizing a match metric that is based
on the likelihood of the observations given a hypothesized displacement. Second, the geometric
mapping described by the resulting match points is used to resample the image to accomplish the
actual warping. The combination of these two steps must produce a set of match points that are
consistent and are sensitive to the overall content of the image. The desire to achieve a significant
degree of temporal cancellation drives both the required accuracy for the match points and the
fidelity of the interpolation employed in resampling the intensities.

The DAS rubber-sheet registration algorithm has two key features. First, it uses a hierarchical
process that generates frame-to-frame correspondences on a coarse basis, using decimated low-
spatial-resolution imagery. The information from this coarse registration then guides the algorithm at
finer resolutions, leading to the ultimate full resolution match points. Advantages of this approach
include computational efficiency and a framework in which low clutter-free regions of an image
(e.g., blue sky) are not distorted by registration. Second, it uses a simple clutter and noise model,
which represents key features of the data, without producing a computationally complex
implementation. This model drives a maximum-likelihood algorithm leading to a robust match point
selection.

The RS_RS module contains many software switches that try to enhance and elaborate on the
basic algorithm steps of match point grid generation, match point interpolation, and resampling.

The DAS registration algorithms are the most difficult and provide the most functionality of all the
DAS modules. For a more detailed description of the registration algorithm, the user is directed to
the RS_RS module description document and the AIRMS Final Report.

5.2.4 Module FL_IR
FL_IR designs and applies the velocity independent portion of a continuously adaptive three-

dimensional matched filter using the Point Spread Function (PSF) and the estimate of the clutter

7

covariance matrix. The algorithm begins by locally demeaning the data with a 3-D moving “cube”
that is typically 5x7x3 pixels. Next, the sample covariance matrix is estimated for each homogeneous
region in the scene. The filter can be designed and applied using the data from the whole image (no
segment map is input in the namelist) or, alternately, separate filters can be designed for regions
defined via the input segment map. The segment map is designed using the DAS module RS_SG that
is currently scheduled for implementation next year. The resulting covariance matrix (or matrices for
a multi-segment case) is computed by averaging the covariance matrices of cubes of data belonging
to the region of interest. The algorithm then inverts the matrices and multiplies the results by cubes
of image data in order to spectrally whiten the scene. The whitened data is then convolved with the
PSF.

As with RS_RS, FL_IR is a complex algorithm. For a more detailed description of the covariance
filtering algorithm, the user is directed to the FL_IR module description document and the AIRMS
Final Report.

5.2.5 Module RS_RS_ST
The intent of the RS_RS_ST module is to move potential targets in the scene back to their original

“nonjittered” positions so that the targets will be properly integrated during frame stacking
(FL_SP_VD module). To accomplish this purpose, RS_RS_ST can either restore the nonjittered
targets to their exact positions prior to RS_RS or it can restore jittered targets to positions based on
the pixel velocities provided by RS_RS. For a more detailed description of the reverse registration
algorithm, the user is directed to the RS_RS module description document and the AIRMS Final
Report.

5.2.6 Module FL_SP_VD
The heart of the DAS signal processing stream is the 3-D matched filter modules used to suppress

clutter and enhance target responses. Both the FL_SP and FL_SP_VD modules apply 3-D matched
filtering for target detection. These filtering operations are divided between the two modules with
FL_SP applying velocity-independent operations of 3-D matched filtering while FL_SP_VD applies
the velocity dependent operations by integrating filtered target energy over a number of shifted
frames according to a set of target velocity hypotheses.

The clutter motion is restored in the Reverse Registration module RS_RS_ST and the restored
data is passed to FL_SP_VD where target energy is summed or integrated under a number of velocity
hypotheses. Because this integration of target energy is performed by shifting and interpolating the
image frames along a grid of velocity hypotheses, velocity-dependent operations are known as
“stacking”, hence the FL_SP_VD module is also know as the “stacker.” For a more detailed
description of the FL_SP_VD algorithm, the user is directed to the FL_SP_VD module description
document and the AIRMS Final Report.

5.2.7 Module DT_BN
The purpose of the Detection and Thresholding, Background Normalization (DT_BN) module is

to provide the subsequent tracker module with constant false alarm rate (CFAR) detection
information that will aid its function in forming target tracks and minimizing false tracks (e.g. clutter
related tracks). DT_BN also provides detection information that can be used to generate ROC curves
that measure the performance of the software modules that precede DT_BN in DAS. For a more

8

detailed description of the DT_BN algorithm, the user is directed to the DT_BN module description
document and the AIRMS Final Report.

5.2.8 Module PARALLEL DAS
All of the converted DAS modules are capable of being executed either sequentially or in parallel

mode when using MPI. The flexibility of running the DAS modules either sequentially or in parallel
has been preserved from the original DAS FORTRAN. Parallel DAS is executed by calling module
das. For sequential module execution of the DAS modules, execute the specific module binary, e.g.,
prog_ap_ti. Unlike serial DAS that requires outputs to be written to files between one DAS module
to the next DAS module in the pipeline, parallel DAS has the advantage of processing multiple
stacks of data from a file with a single call to the das executable.

5.3 DAS ANALYSIS MODULES

In addition to the already mentioned converted and parallelized DAS modules, two DAS analysis
modules have also been converted to ANSI C from FORTRAN – bas2eos and mat2bas. These two
modules can assist the researcher to analyze the output of the DAS algorithms.

5.3.1 Module BAS2EOS
Module bas2eos converts a BASIL I/O file to Electro-Optical Systems (EOS) format. The EOS

file is defined by its width and height, the size of any margins surrounding the image (specified by
the margins containing only valid pixels of the total image), a value specifying in which of several
formats the actual image data is stored, and the image data. The EOS file also establishes the
structure for filters, which are identical to images except smaller in size. This module is executed
when performing data verification on the BASIL I/O files and is not normally invoked directly by a
user.

5.3.2 Module MAT2BAS
Module mat2bas converts a MATLAB file to BASIL I/O format. Module mat2bas has an option of

converting all frames or a selected index of the frames contained in the MATLAB file into BASIL
format. This module allows users to provide their own data for testing.

6. DISTRIBUTED ALGORITHM STREAM OPERATION

6.1 PLATFORMS

The converted and parallelized IRST signal processing modules and supporting files have been
installed and fully tested on the systems defined in Table 1.

9

Table 1. HPC platforms.

Hewlett-Packard Superdome

 Location: SSC San Diego Distributed Center
 Name: Longview
 Operating System: HPUX 11i
 Number of Nodes: 48
 Speed of Processors: 550 MHz

SUN Ultra Enterprise 1000

 Location: Naval Oceanographic Office (NAVO)
 Name: Wolfe
 Operating System: SunOS 5.7
 Number of Nodes: 64
 Speed of Processors: 400 MHz

Silicon Graphics Origin®2000
 Location: Air Force Aeronautical Systems Center (ASC)
 Name: hpc03-1
 Operating System: IRIX 6.5
 Number of Nodes: 23
 Speed of Processors: 195 MHz

Silicon Graphics Origin 2000

 Location: SSC San Diego
 Name: Puma
 Operating System: IRIX 6.5
 Number of Nodes: 1
 Speed of Processors: 195 MHz

Mercury

 Location: AFRL/SN
 Name: Mercury MP-510
 Operating System: MC/OS 5.7.0
 Number of Nodes: 64
 Speed of Processors: 400MHz

Linux Cluster
 Location Air Force Research Lab/IF
 Name Hades
 Operating System Linux
 Number of Nodes 32-48
 Speed of Processors 700MHZ and 1300MHZ Athalons (Pentium II)

6.2 DISTRIBUTION PACKAGE CONTENTS

Table 2 lists the files included in the IRST distribution package, where xxx is the release number.

10

Table 2. Distribution package contents.
irst_dist_xxx Directory for IRST installation

EXPORT_CONTROLLED Export disclosure notice
README ASCII IRST Introduction

irst_dist_xxx/code Directory for IRST files
Makefile Compiles the IRST distribution package

irst_dist_xxx/code/src Directory for IRST source files
irst_dist_xxx /code/cblue Directory for Cobalt Blue

README Cobalt Blue compilation instructions
include file (*.h) Include files
html files (*.html) HTML files

irst_dist_xxx /code/cblue/fcrt Directory for Cobalt Blue source code
mkfcrt Builds translation run-time library
source files (*.c) Translator source files

irst_dist_xxx /code/env Directory for platform compiler options
hp Hewlett Packard
irix Silicon Graphics
linux Linux
mercury Mercury
solaris Sun
solaris.NAVO-wolfe NAVO Sun
solaris.nephi.mpich SSC SD-Nephi

irst_dist_xxx /code/include Directory for IRST include and prototype files
include files (*.h) IRST include files
INCLUDE_LIST List of all include files

irst_dist_xxx /code/lint Directory contains platform specific Flexelint files (*.lnt)
irst_dist_xxx /doc Directory for documents

incident_log IRST details of software fixes
users_manual.pdf IRST Users Manual
conversion.pdf IRST FORTRAN to ANSI C

Irst_dist_xxx/doc/irst_doc Directory for IRST algorithm documents (*.pdf)
irst_dist_xxx/doc/irst_doc/Final_Report Directory for AIRMS final report (*.pdf)
Irst_dist_xxx/test Directory for IRST validation

comp_stats_irst.c Comparison statistics
go Executes test cases using different options
runtests Executes all test cases for a given directory
Makefile Compiles file comp_stats_irst.c

irst_dist_xxx/test/AP_TI/ Directory for AP_TI test cases
Irst_dist_xxx /test/DAS/ Directory for pipeline test cases
irst_dist_xxx/test/DT_BN/ Directory for DT_BN test cases
irst_dist_xxx/test/FL_IR/ Directory for FL_IR test cases
irst_dist_xxx/test/FL_SP_VD/ Directory for FL_SP_VD test cases
irst_dist_xxx/test/MAT2BAS/ Directory for MATLAB to BASIL test case
irst_dist_xxx/test/RS_RS/ Directory for RS_RS test cases
irst_dist_xxx/test/RS_RS_ST/ Directory for RS_RS_ST test cases
irst_dist_xxx/test/SA_PN/ Directory for SA_PN test cases
irst_dist_xxx /data/AP_TI/ Directory for AP_TI reference files
irst _dist_xxx /data/Cloud_data/ Directory for input Cloud data files
irst _dist_xxx /data/DT_BN/ Directory for DT_BN reference files
irst _dist_xxx /data/FL_IR/ Directory for FL_IR reference files
irst _dist_xxx /data/FL_SP_VD/ Directory for FL_SP_VD reference files
irst _dist_xxx /data/MAT2BAS Directory for MAT2BAS reference files
irst_dist_xxx /data/Parameters/ Directory containing input auxiliary files
irst _dist_xxx /data/RS_RS/ Directory for RS_RS reference files
irst_dist_xxx /data/RS_RS_ST/ Directory for RS_RS_ST reference files
irst_dist_xxx /data/SA_PN/ Directory for SA_PN reference files

6.3 INSTALLATION AND CONFIGURATION

Installation of the IRST distribution package requires at least 50 MB of disk space. Additional disk
space will be required to store the processed output BASIL I/O and log files. These instructions

11

assume that you have an intermediate knowledge of UNIX command syntax and experience
installing applications on UNIX. If you have any problems, please contact your system administrator
for technical assistance.

Copy the IRST distribution package (irst_dist_xxx.tar.Z) to the directory for installation and
perform the following steps:

uncompress irst_dist_xxx.tar.Z
tar xvf irst_dist_xxx.tar

The preceding two steps will install all of the IRST software and supporting documentation in the
irst_dist_xxx subdirectory of the current installation directory (referred to as the install_dir).

Create the required environment variables. The environment variable “IRST_ENV” defines the
Unix machine for operation, “IRST_DIR” defines the location of the IRST software, and
“IRST_TEST_DATA_DIR defines the data location.

setenv IRST_ENV [hp, irix, linux, mercury, solaris, solaris.NAVO-wolfe, or
solaris.nephi.mpich]
setenv IRST_DIR install_dir/irst_dist_xxx
setenv IRST_TEST_DATA_DIR install_dir/irst_dist_xxx/data

Create a temporary subdirectory for writing the DAS output BASIL data files as follows:
mkdir install_dir/irst_dist_xxx/temp

Upon execution of a DAS module, a unique subdirectory name is created in directory
install_dir/irst_dist_xxx/temp, which will contain the binary BASIL output file and other ASCII
log files.

If there is insufficient file space on the default disk to contain the output BASIL files, then modify
variable TEMP_DIR in file install_dir/irst_dist_xxx/code/$IRST_ENV to redirect the output
BASIL files.

The Makefiles contained in the IRST source distribution directories may update more than one
target at a time when supported by the host computer. For instance, on the HP Superdome the
number of targets updated concurrently is determined by the environment variable PARALLEL.
Typically, PARALLEL is set to the maximum number of available processors.

setenv PARALLEL n
The user may find it convenient to create a shell script that defines the aforementioned

environment variables so as to avoid the need to create them individually after each login.

6.4 CONFIGURATION

The DAS software has been designed to allow researchers to compile DAS using several different
configurations, depending on supporting software installed on the target platform and the
researcher’s goal. The DAS software is highly configurable and supports MPI and the Vector, Signal,
and Image Processing Library (VSIPL). The following configurations are available to the researcher:
• MPI and VSIPL
• MPI and No VSIPL
• No MPI and VSIPL
• No MPI and No VSIPL

12

The DAS program mat2bas requires the installation of Matlab libraries. Because all HPC
platforms may not contain the required library files for compiling program mat2bas, program
mat2bas is also configurable. To execute all the DAS programs included in the IRST distribution,
both MPI and Matlab must be installed on the target platform.

6.4.1 MPI
Installation of MPI is required to create and execute the parallel DAS programs. Configuring the

DAS software to include MPI is performed by editing the environment file
install_dir/code/env/$IRST_ENV according to the comments in the file. If MPI is to be included in
the compilation process, then the appropriate path names for MPI must be included in the
install_dir/code/env/$IRST_ENV file. If MPI is not installed on the target platform or there is no
interest in executing the parallel DAS programs, then simply comment out the lines that reference
MPI as instructed in the install_dir/code/env/$IRST_ENV file. By excluding MPI from the
compilation process, only the sequential DAS programs are capable of being executed.

6.4.2 VSIPL
In addition to supporting MPI, DAS also support VSIPL. Configuration of VSIPL is also

performed by editing the environment file install_dir/code/env/$IRST_ENV according to the
comments in the file. If VSIPL is to be included in the compilation process, then the appropriate path
names for VSIPL must be included in the install_dir/code/env/$IRST_ENV file.

6.4.3 Matlab
Program mat2bas requires the existence of Matlab library files for successful compilation. If the

Matlab library files do not exist on the target platform, then simply edit the
install_dir/code/env/$IRST_ENV and comment out lines that reference Matlab. Also follow the
instructions in the install_dir/code/env/$IRST_ENV file.

6.5 COMPILING AND LINKING

At a minimum, compilation of the IRST distribution package requires the presence of the
following pre-installed software:

C compiler specific to the platform

Bourne shell or bash shell (Linux only)

Please note that the compilation anticipates standard location for compilers, libraries, and system
utilities, such as make. However, to fully exploit the parallel implementation of DAS, it is
recommended that MPI be installed. In addition, program mat2bas requires the presence of Matlab
library files for the compilation process. Please refer to Section 6.4 “Configuration”, for specific
instructions on configuring the DAS software. All system specific locations are changed in the
install_dir/code/env/$IRST_ENV file.

Create the following environment variables:
setenv cblue install_dir/irst_dist_xxx/code/cblue
setenv os [hpux, iris, sparc, linux, or mercury]

13

The environment variable “cblue” defines the location of the Cobalt Blue software, and “os”
defines the Unix machine for the Cobalt Blue run-time library.

Three separate steps are required for compiling and linking the IRST software. The first step is to
build the Cobalt Blue library, which is performed by executing the following commands:

1. cd install_dir/irst_dist_xxx/code/cblue/fcrt
 sh mkfcrt

The above command compiles and links all of the Cobalt Blue software for the defined operating
system contained in the environment variable “os”. Depending on the operating system, the output
Cobalt Blue library filename is fcrtx.a, where x = i for iris, or x=s for sparc, x=h for hpux, x=lx for
linux, or x=mc for mercury.

After successfully building the Cobalt Blue library, execute the following commands:
2. cd install_dir/irst_dist_xxx/code
 make

The above commands compile and link all of the IRST distribution software. As a result of
successfully executing this command, all of the IRST image processing executables will reside in
subdirectory install_dir/irst_dist_xxx/code/src/prog_yyy, where yyy identifies the DAS module.

The third and final step is to compile the verification and validation module comp_stats_irst.
Execute the following commands:

3. cd install_dir/irst_dist_xxx/test
make

If individual IRST modules require re-compilation, then simply execute the Makefile contained in
the IRST program directories.

6.6 DATA DESCRIPTION

The AIRMS program successfully collected over 1.5 terabytes of image data, which was processed
through DAS using the Paragon HPC implementation. For internal software validation conducted at
SSC San Diego, two AIRMS data sets were processed through the converted and parallelized DAS
modules, Cloud Data and Terrain Data. This distribution package only contains the Cloud Data set
from the AIRMS database, which was used for testing and verifying the converted and parallelized
IRST modules included in the distribution package. Table 3 provides a brief data description of the
Cloud Data.

The I/O format of the DAS image files is named Baseline Algorithm Stream Input/Output Logic
(BASIL) [Reference 5]. BASIL is the standard I/O package used by the DAS image processing
software. All of the converted DAS routines are capable of reading and writing BASIL files. BASIL
was developed to provide a consistent, flexible and extendible I/O architecture that could grow along
with the needs of the AIRMS system and the data processing requirements.

14

Table 3. Data description.

Name
Prefix

Number
of

Frames

Pixels in
Azimuth

Pixels in
Elevation

Clutter
Type

Real Targets/
Type

Comments

‘cd’ 5 256 256 Cloud/sky None A subpatch from Flight
12 (12:46:11), clouds at
20 – 30 km altitude. A/C
altitude 39,000 feet.

6.6.1 Input Data
The FORTRAN-generated BASIL input files (provided in the distribution package) are used for

executing the converted and parallelized DAS modules. Because each module is capable of running
sequentially, the distribution package contains at least one BASIL input file for each DAS translated
module. In addition, there are also FORTRAN generated auxiliary files contained in the distribution
package, which are required by some of the translated DAS modules.

6.6.2 Reference Data
In order to verify that the newly installed, translated, and parallelized software creates BASIL

output files consistent with the FORTRAN-generated BASIL files, the distribution package contains
reference files that were generated using the DAS FORTRAN. The FORTRAN generated reference
files are used to verify the validity of the BASIL output files created by the translated modules. A
standard verification test program is included that validates each newly created BASIL output file by
quantifying the pixel differences between the two BASIL files.

7. DAS MODULE TESTING
Execution of the converted and parallelized DAS modules is performed through the execution of

program go or runtests, which require at least one input argument, the test case filename. A number
of different test cases have been designed and created for the execution of the converted DAS
modules. The test cases are contained in the test subdirectories that are identified by their DAS
module name. Because DAS was originally programmed in FORTRAN, the DAS modules received
their inputs from namelist files, which are also referred to as test cases within the confines of this
document. The test cases were created to test different software paths for the converted and
parallelized DAS modules, and to demonstrate that the number of processors for DAS execution is a
configurable parameter. Each test case filename defines a particular test for the executed DAS
module.

In addition to running a specific DAS module either sequentially or in parallel mode, the DAS
modules can also be run in a pipeline mode. For pipeline execution of the DAS modules, the test
cases are contained in the DAS subdirectory.

Because the Terrain Data is not contained in the IRST software distribution package, none of the
test cases referencing the Terrain Data set can be executed successfully. In addition, only the
FORTRAN reference files for the Cloud Data test cases ending with a 1 (e.g. cd_seq_1) are
contained in the IRST distribution package, and as a result only those Cloud Data test cases can be
executed successfully. Use caution when executing runtests for an entire subdirectory to avoid

15

executing test cases for which there is no input or reference data – all of the Terrain Data test cases,
and Cloud Data test cases ending in a number other than 1.

7.1 DAS DRIVER PROGRAMS

Contained in the install_dir/irst_dist_xxx/test directory are programs go and runtests, which are
used to execute the test cases for the converted and parallelized DAS modules. Programs go and
runtests expedite the execution of the converted DAS modules by processing the DAS configurable
parameters contained in the test cases.

7.1.1 go
The go program executes a single DAS test case test file, which is specified on the program

execution command line. Execution of program go with no options displays the following usage
note:

Usage: go [options] testspec
 Arguments:
 -q quiet -- output to file rather than screen
 -t show timing information
 -tv run the program under TotalView
 -x run the program but do not validate the result
 testspec testspec file to be used to drive execution

The only required argument for the go program is testspec, which identifies the test case filename.
When executing the go program, a subdirectory is created in the temp directory, which contains all
the DAS output files. The naming convention for the created subdirectory is pp_seq_nnnn, where
“pp” is the program name, “seq” identifies sequential execution, and “nnnn” is the process number.
The naming convention for the parallel subdirectory is pp_par_nnnn, where “par” identifies parallel
execution.

The default execution of the go program always performs verification of the ANSI C created
output BASIL file, using program comp_stats_irst. Program comp_stats_irst compares the pixel
differences between the newly created ANSI C BASIL output file to the FORTRAN-generated
BASIL reference file. The difference image is normalized, and program comp_stats_irst produces a
report giving the maximum pixel difference, the standard deviation, and the mean of the normalized
difference values.For example, execution of SA_PN using test case cd_seq_1 is performed as
follows:

cd install_dir/irst_dist_xxx/test
go SA_PN/cd_seq_1

Figure 2 shows actual output of an SA_PN execution on the Hewlett Packard Superdome, located
at SSC San Diego. SA_PN starting in sequential mode.

16

Figure 2. SA_PN output example.

7.1.2 runtests
In addition to program go, program runtests is capable of executing a given test case or all the test

cases found in the subdirectories. Execution of program runtests with no options displays the
following usage note:

Usage: runtests [-t] arguments [...]
 Executes the IRST test on each argument or file found in subdirectories.
 -t Show timing information, not pass/fail.

SA_PN_CHILD: Total processing time = 2.599 seconds

SA_PN execution time: 2.893 seconds.

SA_PN completed successfully.

BAS2EOS: dumping BAS file.

Image size: 256 rows by 256 cols

BAS2EOS: complete.

comp_stats_irst difference statistics: PASSES

comparison to requested values less than 1.0e-02 (relative)

maximum: 9.578471e-07

mean: -9.682219e-08

stddev: 2.008243e-07

comp_stats_irst difference statistics: PASSES

comparison to requested values less than 1.0e-02 (relative)

maximum: 9.614707e-07

mean: -9.811202e-08

stddev: 2.017612e-07

comp_stats_irst difference statistics: PASSES

comparison to requested values less than 1.0e-02 (relative)

maximum: 9.539805e-07

mean: -9.711206e-08

stddev: 1.997765e-07

comp_stats_irst difference statistics: PASSES

comparison to requested values less than 1.0e-02 (relative)

maximum: 1.157750e-06

mean: -9.834672e-08

stddev: 2.040039e-07

comp_stats_irst difference statistics: PASSES

comparison to requested values less than 1.0e-02 (relative)

maximum: 1.152715e-06

mean: -9.886634e-08

stddev: 2.018421e-07

17

Program runtests was created to expedite the execution of several test cases without providing
each of the test case filenames for each DAS module. By providing a wildcard “*” with the test case
filename a number of different test cases are executed. For example, to execute all the test cases
contained in all the subdirectories, simply type runtests “*”. The image fidelity test for each test case
will produce a “pass” or “fail” message to the display without giving the overall statistics.

For example, execution of program runtests for SA_PN using all Cloud Data test scripts ending in
1 is performed as follows:

cd install_dir/irst_dist_xxx/test
runtests SA_PN/cd*1

The following is an actual output of program runtests on the Hewlett Packard Superdome, located
at SSC San Diego:

Test "SA_PN/cd_03node_1" passed
Test "SA_PN/cd_18node_1" passed
Test "SA_PN/cd_seq_1" passed

7.2 SINGLE MODULE AND PIPELINE DAS TEST CASES

The test cases for executing a single DAS module are contained in the test subdirectories, which
are named for the DAS module (e.g., install_dir/irst_dist_xxx/test/SA_PN). The file naming
convention for the single-module test cases is dd_seq_n, where “dd” is either cd for Cloud Data or td
for Terrain Data, “seq” is sequential, and “n” is the unique test case number. Naming convention for
the parallel test case filenames is dd_ppnode_n, where “pp” is the number of processors allocated.

In addition to running a single DAS module, pipeline test cases for the parallel DAS modules exist
in directory install_dir/irst_dist_xxx/test/DAS. Parallel DAS has the advantage of processing
multiple stacks of data from a file with a single call to the das executable, unlike the sequential
pipeline that requires file outputs to be passed from one DAS module to the next. The file naming
convention for the test cases contained in the DAS subdirectory is dd_first_last_ppnode_n, where
“dd” is cd for Cloud Data or td for Terrain Data, “first” is the first module in the pipeline, “last” is
the last module in the pipeline, “pp” is the number of processors allocated, and “n” indicates a
unique test case number. For details of the DAS data flow for the converted and parallelized
modules, refer to Figure 1.

The pipeline test cases are also executed using program go or runtests. All of the Cloud data test
cases can be run successfully from the IRST distribution DAS subdirectory.

8. DAS SOFTWARE LIMITATIONS
This section briefly describes FORTRAN DAS configurations that are not supported by the

translated and parallelized DAS programs.
1. Program das, for FL_IR “checkerboard” option, will halt and print and error message when the

following NAMELIST parameters are set:
NODES_AZ > 1,
NODES_EL > 1, and
CVM_GEN_OPT = 3

18

2. Program serial FL_SP_VD will halt and print an error message when PROJ_FLAG=TRUE. The
original DAS FORTRAN sets this variable to FALSE when Fl_SP_VD is executed in parallel
mode.

3. In order to compile program mat2bas, the following MATLAB library files must be installed on
the targeted platform for DAS execution.

libmat.sl
libmi.sl
libmx.sl
libut.sl

If these MATLAB library files do not exist on the targeted platform for DAS execution, then
program mat2bas will not compile. This is a stand-alone program that is used to convert MATLAB
files into BASIL files, and therefore will not affect execution of the DAS modules.

19

9. REFERENCES
1. Cobalt Blue Inc., “FORTRAN to C Translator,” February 1999.

2. Dennis Cottel, “Staged Module Development Plan for the CHSSI SIP-8 Infrared Search and
Track Project,” Internal Project Memo, SSC San Diego, August 2000.

3. Partow, P., and D. Cottel. “The Scalable Programming Environment.” SSC San Diego Technical
Report 1672, Rev. 1, September 1995.

4. PAR Government Systems Corporation, “Airborne Infrared Measurement System (AIRMS)
Final Technical Report,” December 1996.

5. PAR Government Systems Corporation, “BASIL User’s Manual,” December 1996.

INITIAL DISTRIBUTION

Defense Technical Information Center
Fort Belvoir, VA 22060–6218 (4)

SSC San Diego Liaison Office
C/O PEO-SCS
Arlington, VA 22202–4804

Center for Naval Analyses
Alexandria, VA 22311–1850

Office of Naval Research
ATTN: NARDIC (Code 362)
Arlington, VA 22217–5660

Government-Industry Data Exchange
Program Operations Center
Corona, CA 91718–8000

Approved for public release; distribution is unlimited.

